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Femtosecond Kerr-lens autocorrelation
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An autocorrelation measurement of femtosecond laser pulse duration using the Kerr-lens mechanism is
demonstrated. This technique can also be used as a sensitive and absolutely calibratable method for
measuring ultrafast optical nonlinearities. A method that uses an electronic spectral-filtering scheme is
proposed for determining the frequency chirp of pulses by interferometric autocorrelation.  1997 Optical
Society of America
The proliferation of ultrashort-pulse lasers has been
accompanied by considerable progress in pulse diag-
nostics, including elaborate methods for determining
the exact temporal behavior of the phase and the am-
plitude of the pulsed electric field.1 In many practi-
cal cases, however, such detailed information is not
necessary, and only the pulse duration stpd and the
absolute magnitude of the frequency chirp need to
be determined. For this purpose, second-order auto-
correlation techniques have proved to be simple yet
suff icient.2 This type of autocorrelation requires a
nonlinear-optical material with a response that ex-
hibits a quadratic irradiance dependence:

Iout ­ AIin 1 BIin
2 , (1)

where Iout and Iin are the output and the incident pulse
irradiance, respectively. A process most commonly
employed for this purpose is second-harmonic gener-
ation (SHG) within the low-pump-depletion limit. In
that case, Iin represents the incident irradiance at the
fundamental frequency svd and Iout denotes the gener-
ated second-harmonic irradiance at 2v. In addition,
A ­ 0 (i.e., no linear background) and B ~ jxs2dj2, where
x s2d is the second-order nonlinear-optical susceptibility.
To obtain the autocorrelation, one splits the laser beam
into two paths (e.g., with a Michelson interferometer)
that have a variable relative delay std. The exit irra-
diance of the interferometer is Iin ­ jEstd 1 Est 1 tdj2,
where Estd is the instantaneous electric field of the
laser pulse. The combined fields impinge upon the
nonlinear medium to give an integrated output sig-
nal: Sstd ­

R
Ioutstddt, where the integration limit is

usually determined by the response time of the detec-
tion system.

The quadratic dependence in Eq. (1) can also be
achieved with third-order nonlinearities x s3d involving
nonlinear absorption or nonlinear refraction. In the
low-irradiance limit, optical measurements involving
either nonlinear absorption or nonlinear refraction
give rise to a change of transmitted irradiance that
varies quadratically with the incident irradiance. For
example, two-photon absorption,3 polarization Kerr
gating,4 and beam def lection induced by the optical
Kerr effect sn2d (Ref. 5) have been employed to yield
pulse autocorrelations.

In this Letter a simple x s3d autocorrelator using the
Kerr-lensing mechanism is demonstrated. In a Kerr-
lens measurement such as Z scan,6,7 the transmitted ir-
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radiance can be approximated as a quadratically vary-
ing function of incident irradiance, as in Eq. (1). One
can assess the sensitivity of such a measurement by
evaluating the change of transmittance DT f­ IoutyAIin
in Eq. (1)] versus Iin. Assuming an optical Kerr coeffi-
cient n2 and a thickness L for the nonlinear sample, we
calculate DT as a function of the nonlinear phase shift,
DF0 ­ s2pyldn2IinL, using the models given by Refs. 6
and 7. These models assume a thin sample approxi-
mation, which requires that L # n0Z0, where Z0 is the
Rayleigh range of the focused Gaussian beam and n0
is the linear refractive index of the material.8 The re-
sults are plotted in Fig. 1 for an aperture (conventional
Z scan) and an obscuring disk (eclipsing Z scan), both
of which have transmittance of 0.02. The sample posi-
tion is f ixed at points corresponding to the peaks and
valleys of the Z scans. These points are Z ­ 60.85Z0
for the aperture6 and Z ­ 60.5Z0 for the disk,7 where
Z is the distance from the focus. The dashed lines in
Fig. 1 are linear fits with approximate slopes of 60.2
for the aperture and 62 for the disk. As expected,
the calculation shows that a far-field disk has higher
sensitivity.7 More importantly, note that DT exhibits
a large dynamic range while remaining linear in the
time-averaged phase shift kDF0l. This is important
for obtaining an accurate and conveniently retrieved
autocorrelation measurement. In Fig. 1 a comparison
is made with the case of a two-photon absorber (2PA)
placed at focus. Here, DT is plotted versus the time-
averaged parameter kQ0l ­ k bIinLl (solid line), where b
is the two-photon absorption coefficient.6 A clear de-
viation from linearity (dashed line) is evident.

The Kerr-lens autocorrelation (KLAC) arrangement
shown in Fig. 2 is nearly identical to that of a collinear
SHG autocorrelator that uses a Michelson interferom-
eter. We simply replace the SHG crystal with a Kerr
medium (i.e., a semiconductor). The sample must be
positioned at the peak or the valley of an appropriate
Z scan, which requires that a partially obscuring aper-
ture or (preferably) disk be placed before the far-field
detector.

Figure 3 depicts rapid-scan autocorrelations of
,100-fs (FWHM) pulses from a Ti:sapphire cw self-
mode-locked (75-MHz) laser obtained with the KLAC
technique. The output of the interferometer was
focused with an f ­ 7.5 cm lens to a spot size of
w0 ø 20 mm. The nonlinear medium in this experi-
ment is 2-mm-thick polycrystalline ZnS placed at the
 1997 Optical Society of America
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Fig. 1. Calculated transmittance change as a function
of average nonlinear phase shift kDF0l assuming a 2%
transmittance aperture with nonlinear sample position
at z ­ 60.85z0. Also shown is calculation for a 2%
transmitting on-axis disk with the sample at z ­ 60.5z0.
The dashed curves are linear f its to the calculated curves.
For comparison, the change of transmittance for a two-
photon absorber placed at the focus is also plotted.

Fig. 2. Typical arrangement for a collinear Kerr-lens
autocorrelator.

peak position. An obstruction disk yielding 2–3%
transmission is placed in front of a silicon photodiode
(Thorlabs, Inc., Model DET100). Figure 3(a) shows a
KLAC trace obtained with an incident average power of
80 mW (per interferometer arm) superimposed upon a
theoretical fit assuming a sech2 temporal profile. Fig-
ure 3(b) shows two normalized KLAC traces measured
at incident powers of 80 and 40 mW, revealing the
linear dynamic range. It is worth noting that, in an
eclipsing Z-scan geometry (i.e., when a disk is used),7

linearity is maintained for transmittance changes of
nearly 40%.

The choice of nonlinear material depends on the
wavelength range and the laser pulse width. While
it is desirable to have the largest n2, the nonlinear
response must have a turn-on time shorter than
the pulse width. For femtosecond pulses the bound
electronic Kerr effect in semiconductors is appropriate
for this purpose. The optimum material is a semicon-
ductor (or a dielectric) with a band gap just above the
two-photon absorption wavelength (Eg . hny2). This
operating condition has been shown to give the largest
value of n2 without deleterious two-photon absorp-
tion.9 For Ti:sapphire lasers sl ­ 700–900 nm) ZnS
is the most suitable semiconductor, whereas ZnSe and
CdSe work best at l . 950 nm and l . 1400 nm,
respectively. The optimum thickness of the non-
linear material depends on two factors: optimum
focusing requires that L ø Z0, whereas avoiding pulse-
broadening that is due to group-velocity dispersion ne-
cessitates that L , Zd ­ pc2tp

2yf2 lns2dl3jd2nydl2jg.
For ZnS at l ­ 800 nm, Zd ø 8 mm for tp ­ 100 fs. It
is important to note that the thickness limitation set by
group-velocity dispersion is less restrictive than length
restrictions imposed by group-velocity mismatch in the
SHG process.10

By Z-scan analysis,6 KLAC can also be exploited to
make sensitive n2 measurements. Such a measure-
ment is absolutely calibrated and highly accurate be-
cause it permits simultaneous determination of pulse
width tp, Rayleigh distance Z0 (for locating the posi-
tions of the peak and the valley), and DF0 (from DT ).
An aperture is preferred for measuring n2, whereas
an eclipsing disk is more favorable for the autocor-
relation measurements. Even though the disk has a
larger slope DTyDF0, it is highly sensitive to the beam
shape and to the amount of light that it transmits.
With KLAC with an aperture, the nonlinear index
of ZnS was measured as n2 ø 6.5 3 10215 cm2yW at
l ­ 850 nm.

The minimum power requirement for obtaining
an autocorrelation is directly related to the smallest
resolvable DT . In the above experiment a DT of
ø 0.1% was resolved by standard averaging on a
digital oscilloscope (Tektronix Model TDS-350). For
an aperture this corresponds to an index change
Dn ø 6 3 1027, which in turn gives a minimum
irradiance of 108 Wycm2 for ZnS. Recalling the
aforementioned laser parameters, we obtain a mini-
mum average power Pave ø 6 mW. Replacing the
aperture with a disk improves the resolution to
Pave , 1 mW. It must be noted that the beam quality
of the laser affects only the sensitivity and not the
shape of the autocorrelation trace. In other words,
using KLAC as a pulse-width diagnostic tool does
not necessarily require high beam quality if lower
sensitivities can be tolerated.

Interferometric SHG autocorrelations have been
used to obtain information about the laser pulse
chirp.11 For an irradiance temporal profile f std
the incident electric f ield is then given by Estd ­p

f std cosfvt 1 wstdg, where wstd denotes the chirp. In

Fig. 3. Measured Kerr-lens autocorrelations of 100-fs
Ti:sapphire laser pulses. (a) Comparison of measured
data with calculated autocorrelation of a sech2 pulse. (b)
Two autocorrelation traces measured at average powers
of 80 and 40 mW, indicating the dynamic linearity of the
scheme.
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Fig. 4. Interferometric autocorrelation of 10-fs pulses cal-
culated assuming that G ­ 2 for (a) unchirped and (b)
chirped sech2 pulses.

the SHG process the detected signal is then given by

SNLstd ­ 1 1 2
Z

f stdf st 1 tddt 1
Z

f stdf st 1 td

3 coss2vt 1 2Dfddt 1 2
Z

f 1/2std

3 f 3/2st 1 tdcossvt 1 Dfddt

1 2
Z

f 3/2stdf 1/2st 1 tdcossvt 1 Dfddt ,

(2)

where Dfst, td ­ fst 1 td 2 fstd and
R

f 2stddt ­ 1. In
Eq. (2) the f irst integral represents the intensity auto-
correlation and the remaining integrals are interfero-
metric terms that contain information about the phase
(i.e., chirp) of the laser pulse. Although accurate in-
tensity autocorrelation can be easily obtained with the
KLAC technique, interferometric measurements of the
pulse chirp will be hindered by the presence of the lin-
ear background term indicated in Eq. (1). The diff i-
culty arises from the fact that the transmitted optical
field is now at the driving frequency svd rather than
the second harmonic s2vd. The nonlinear signal can-
not be distinguished from the linear term in Eq. (1)
that contains the linear interferometric autocorrelation
signal:

Slinstd ­ 1 1
Z

f f stdf st 1 tdg1/2cossvt 1 Dfddt . (3)

The total detected signal is the weighted sum of the lin-
ear and the nonlinear contributions: Sstd ­ Sllinstd 1

akDF0lSNLstd, where a is the appropriate linear slope
depicted in Fig. 1. In a rapid-scan arrangement, delay
is generated by vibrations on one of the interferometer
mirrors so that autocorrelation is viewed in real time.
We can understand this by noting that t ­ ts2vycd,
where v is the maximum velocity of the mirror displace-
ment and c is the speed of light. Under this condition
the interferometric fringes will appear in real time at
a frequency V ­ vs2nycd, which can be made to fall
in the radio frequency range. In such an arrangement
spectral f iltering can eliminate the linear interferomet-
ric term. The filtering process can be implemented
either with electronic circuits (hardware) in real time
or with Fourier analysis (software) after the autocor-
relation is acquired. Similar to the scheme given in
Ref. 12, by use of a band-pass–low-pass f ilter combina-
tion with a band-pass center frequency of 2V the linear
interferometric term at V can be rejected. Note that
this filtering process eliminates the Vt s­ vtd term
in SNL as well. Here, by allowing for an adjustable
gain (G) on the band-pass filter, we can write the total
transmitted signal as

Sstd ­ 1 1 2
Z

f stdf st 1 tddt

1 G
Z

f stdf st 1 tdcoss2vt 1 2Dfddt . (4)

Figure 4 shows Sstd calculated for a G ­ 2 system, as-
suming (a) unchirped and (b) linearly chirped f wstd ­
gt2; g ­ 0.03 fs22] pulses. The G ­ 2 case is particu-
larly interesting because the autocorrelation of the
unchirped pulse exhibits a fringe visibility (f lat bot-
tom) that makes it readily distinguishable from a
chirped pulse. Such a filtering scheme can also be
applied to SHG autocorrelations to facilitate chirp
characterization.

In conclusion, a simple autocorrelation technique
based on Kerr lensing has been demonstrated. The
KLAC technique does not require phase or group-
velocity matching and can be used as an inexpensive
and simple alternative to SHG autocorrelation. This
technique can also be used as a sensitive tool for
measuring the optical Kerr effect by use of femtosecond
lasers. A spectral f iltering technique for obtaining
interferometric KLAC traces was also proposed.
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