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Real-time chirp diagnostic for ultrashort laser pulses
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Using a real-time Fourier-transform algorithm, we present a simple technique for measuring the chirp of

femtosecond laser pulses.
correlation measurements.
OCIS codes: 320.7100, 140.7090, 190.7110.

The remarkable progress achieved in the generation
of ultrashort laser pulses has led to the develop-
ment of reliable systems for industrial as well as
research applications. Many applications demand
high spectral and temporal purity of the laser pulses.
This requirement has driven the development of
elegant techniques for reconstruction of the complex
electric field from a combination of autocorrelation
and spectral data.!”* These measurements give
details of the temporal amplitude and phase but
are computationally intensive and involve elaborate
experimental setups. In many applications, however,
exact knowledge of the complex electric field is not
necessary, provided that the pulse width can be de-
termined and the phase distortions (i.e., chirp) can be
minimized. In principle, both tasks can be performed
in real time by interferometric autocorrelation (IAC)
measurements.>® Here we describe a modification to
the TAC method that makes it much more sensitive to
temporal chirp. This technique is simple and ideal
for monitoring mode-locked laser pulses while per-
forming real-time dispersion control to minimize the
temporal phase distortions. We call this technique
modified-spectrum autointerferometric correlation, or
MOSAIC. We present an analysis of MOSAIC and
demonstrate the principle experimentally by measur-
ing the chirp of femtosecond Ti:sapphire laser pulses.
Assuming that the laser pulse has an irradiance
temporal profile f (¢), the incident electric field is given
by E(t) = f2(t)cos[wt + ¢(t)], where ¢(¢) denotes
the temporal chirp. In second-order IAC experiments
(e.g., use of second-harmonic generation, two-photon
absorption, or the Kerr effect), the detected signal
(assuming a balanced interferometer) is given by®¢

Siac(r) =1 + 2 f FOF (¢ + 7)dr
+ [ F@OF (t + T)coswT + 2A¢)dt
+2 [ FY20F32(t + )cos(wr + Ap)dt
+ 2[f3/2(t)f1/2(t + 7)cos(wT + Agp)de, (1)

where Ag(t,7) = ¢(t + 7) — ¢(t)and [f(t)dt =1. In
Eq. (1), the first integral represents the intensity auto-
correlation whereas the remaining integrals are inter-
ferometric terms that contain information about the
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We demonstrate significantly enhanced sensitivity compared with standard auto-
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phase (i.e., chirp) of the laser pulse. Figure 1 (right)
is a calculated IAC trace for f(t) « sech?(t/t,) with
linear chirp [¢ = a(t/¢,)?]. IAC traces are often used
to determine the pulse duration as well as the presence
(or absence) of phase distortion. Visual interpretation
of pulse chirp from an IAC trace, however, can be
subjective and ambiguous. We show that simple
transformation of an IAC to a MOSAIC representation
can substantially reduce this problem. Equation (1)
reveals there are three main spectral components
of the IAC signal, centered at frequencies 0, w, and
2w. We obtain the MOSAIC by modifying the IAC
spectrum as follows: the o terms are eliminated, the
2w term is amplified by a factor of 2, and the intensity
autocorrelation term is unchanged. This spectral
modification gives the time-domain MOSAIC signal:

Suosarc(r) =1 + 2 [ F@OF (¢ + r)dt
+ Z[f(t)f(t + 7)cos(QwT + 2A¢)dE. (2)

MOSAIC IAC
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Fig. 1. Calculated autocorrelation traces corresponding to
TIAC and MOSAIC for various degrees of linear chirp ob-
tained when we set a = 0 (top), a = 0.15 (middle), and
a = 0.25 (bottom).

© 2002 Optical Society of America



This spectral modification was originally proposed
as a method to eliminate the linear autocorrelation
term (also at w) for Kerr-lens autocorrelation mea-
surements.” A similar filtering technique has also
been used in ultrafast characterization of nonlinear
susceptibilities.® The MOSAIC results that we calcu-
lated using Eq. (2) are plotted in Fig. 1 (left) for the
same linear chirp function assumed for the IAC trace
(right). The envelopes of the minima and maxima
of the MOSAIC traces are also shown in Fig. 1 (left).
The important property of the MOSAIC signal is
that, with no chirp [¢(¢) = 0], the fringe visibility
has an easily identified flat minimum. Compared
with the IAC, assessment of frequency chirp is much
clearer. Another advantage of this filtering scheme
is that the normalized MOSAIC signal is insensitive
to the relative intensity in the two arms of the inter-
ferometer; i.e., the measurements do not require an
intensity-balanced interferometer.

These effects are demonstrated experimentally.
We used a self-mode-locked Ti:sapphire laser pumped
by a doubled Nd:YVO, laser (Coherent Verdi) that
produced pulses with a duration =60 fs (FWHM) at
80 MHz and with a center wavelength A =~ 800 nm.
The chirp of the pulses was controlled by multipass
propagation through a 6-mm-thick fused-silica window
and to a lesser extent by the position of the intracavity
prisms. Autocorrelation traces were obtained with a
rapid-scan Michelson interferometer. Second-order
correlation was obtained with a two-photon absorption-
induced photocurrent in a green LED. The IAC
traces were monitored on a digital oscilloscope (Tek-
tronix TDS 520D) and read into a computer equipped
with Labview software. We obtained similar results
by acquiring the data directly with an oscilloscope
board (National Instruments NI5102), which is more
economical and compact. We converted IAC traces
into MOSAIC waveforms, using a fast Fourier-
transform algorithm. The bandpass filter functions
were taken as rectangular functions centered at w
and 20 having bandwidths of w. The final results
can be displayed in real time for rapid-scan autocorre-
lations. Figure 2 compares IAC and MOSAIC traces
for various amounts of chirp. Consistent with the
calculations of Fig. 1, the MOSAIC traces are far more
sensitive to chirp than the IAC traces, especially for
low chirp. The enhanced sensitivity is due primarily
to the twofold amplification of the interferometric
term in Eq. (2). We can further analyze this by
expanding the cosine term in Eq. (2) to derive an ex-
pression for the fringe visibility by use of the standard
textbook procedure'®:

Swmosaic(r) = g(7) + [gs%(1) + g2 ()2
X cos[2wT + ®(7)], (3)

where g(r) = [f@)f(t + 7)dt is the intensity
autocorrelation,

gs(r) = [ FOF (¢ + Tsin@Aé)de,

go(r) = [ FOF (¢ + )cos(2A)dt

May 15, 2002 / Vol. 27, No. 10 / OPTICS LETTERS 861

are the sine and cosine intensity autocorrelations,
respectively, and ®(r) = —tan"!(gs/g.). The lower
bound (minima envelope) of the MOSAIC trace is
therefore given by

Siiosarc(t) = g(r) — [g:2(r) + g2 (n)]Y2. (4)

The peak of this envelope is seen to be a good measure
of the pulse chirp. Normalized to the maximum of
the MOSAIC signal [i.e., 2g(0)], this quantity (here
called the MOSAIC peak) is plotted in Fig. 3 versus
the normalized mean chirp parameter [defined as
tp [£(t)|de/deldt/[ f(¢)d¢] for various orders of chirp
of a sech? pulse, assuming a general time-dependent
phase ¢(#) that varies as either a(t/t,)?, b(t/t,)?
or c(t/tp)4. We should also address the case, often
encountered in practice, in which two or more higher
orders of chirp are simultaneously present in the laser
pulse [e.g., when ¢(¢) = a(t/t,)? + b(t/t,)® + c(t/t,)].
More specifically, it is useful to know whether mini-
mization of the MOSAIC peak can still correspond to
the minimum of the mean chirp when two partially
compensating chirp orders (such as first and third
orders of opposite signs) are present in the pulse. The
contour plots in Fig. 4 show the calculated mean chirp
(left) and the MOSAIC peak (right) as the first- and

MOSAIC IAC
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Fig. 2. Measured IAC and the corresponding MOSAIC
traces for a cw mode-locked Ti:sapphire laser. We varied
the chirp of the pulses by causing the laser beam to
propagate through a 6-mm-thick SiO; window for (a) zero,
(b) two, (c) three, and (d) five passes.
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Fig. 3. Calculated MOSAIC peak as a function of the nor-
malized mean chirp for different orders of chirp.
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Fig. 4. Contour plots depicting mean chirp (left) and the
corresponding MOSAIC peak (right) as the first- and
third-order chirps (i.e., @ and ¢ parameters) vary in sign
and magnitude.

0.14 4

0.12 4

0.10 4

0.08

0.06

MOSAIC Peak

0.04

0.02+

0.00

1 2 3 4
Propagation Distance (cm)
Fig. 5. MOSAIC peak corresponding to the data in Fig. 2
plotted versus the propagation distance in SiO;. We cal-
culated the solid curve by using the known dispersion for

SiO, and assuming an initial chirp for the laser pulse, us-
ing a = 0, |b] = 0.08(+0.02), and ¢ = 0.024(*+0.003).

o4

third-order chirp parameters (i.e., a and ¢ coefficients)
vary in sign and magnitude. We note that the
minima of both graphs (light-shaded central regions)
are strongly correlated. This demonstrates that the
smallest MOSAIC peak still corresponds closely to the
lowest mean chirp in the pulse, even with multiple
orders of chirp present. The MOSAIC peaks of the
experimental results depicted in Fig. 2 are plotted in
Fig. 5 as a function of propagation distance in the fused
silica. Also shown is the calculated result from the
dispersion data of fused silica. We see that the pulses

that exist in the laser are slightly chirped, as evidenced
by the nonzero MOSAIC peak. Note that the TAC
traces reveal no evidence of chirp. The residual chirp,
which we could not eliminate by tuning the prism
pair in the oscillator cavity, is due to a small amount
of uncompensated third- and fourth-order dispersion.
This is verified in the calculated result (Fig. 5) that
fits the data assuming a = 0, |b] = 0.08(*=0.02), and
¢ = 0.024(x0.003) for our 60-fs (FWHM) pulses.

The smallest detectable chirp depends on a given
experimental signal-to-noise ratio, provided that the
initial autocorrelation signal is purely second order.
We investigated the effects of small deviations from
quadratic response (e.g., caused by two-photon detector
or second-harmonic generation saturation) by consid-
ering an intensity response function I2*¢ with —0.4 <
€ = 0.4 denoting the deviation. Starting with a clean
(unchirped) pulse, calculations show that such a devia-
tion causes a distortion in the flatness of the MOSAIC
peak by a relatively small magnitude, =—e/6 centered
at 7 = 0. Calculations also indicate that, for the rect-
angular filter function (described earlier), pulses that
contain as few as 1.5 optical cycles (within A¢pwam)
can be accurately analyzed, provided that the mean
chirp is =1.

In conclusion, we have presented a simple, real-time
chirp diagnostic for ultrashort laser pulses. This
technique, the MOSAIC, is based on a modified-
spectrum interferometric autocorrelation measure-
ment. Although we have emphasized the real-time
implementation of this technique, we believe it is good
practice to convert all the IAC signals to MOSAIC
waveforms. This allows a more accurate characteri-
zation of the spectral purity of ultrashort pulses.
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