Magnetism

- Opposite poles attract and likes repel
 - Like electric force, but magnetic poles always come in pairs (North, South)
 If you break a magnet in half, you get
 - two magnets! Does this still hold at the atomic level?

DEMO - Lodestone

Magnetism

- Opposite poles attract and likes repel
 - Like electric force, but magnetic poles always come in pairs (North, South)
 - If you break a magnet in half, you get two magnets!
 - Does this still hold at the atomic level?
 - Yes. Individual atoms act like little bar magnets.
 - <u>All</u> magnetic phenomena due to motions of charged particles (usually electrons)
 - Electricity and magnetism different aspects of same phenomenon - electromagnetism

You can never have a North magnetic pole without a South pole!

- Magnetic Fields and Magnetic Domains
- All magnets are surrounded by a field
 - Induces other magnetized objects to line up along it
- Which charged particles are moving in a bar magnet?

is free to pivot in a field.

Magnetic Fields and Magnetic Domains

- All magnets are surrounded by a field
 - Induces other magnetized objects to line up along it
- Which charged particles are moving in a bar magnet?
 - The electrons. They spin like tops.
 - Clusters of spins can align with one another
 - Called magnetic domains

A compass is a magnet that is free to pivot in a field.

Creating and Destroying a Magnet

How can we create a magnet from unmagnetized iron?

Creating and Destroying a Magnet

- How can we create a magnet from unmagnetized iron?
- Align domains => put in strong magnetic field
- How can we weaken the field strength of a magnet?

Creating and Destroying a Magnet

- How can we create a magnet from unmagnetized iron?
 - Align domains => put in strong magnetic field
- How can we weaken the field strength of a magnet?
 - Heat it
 - Random thermal motion will cause the domains to disalign

Inducing Magnetic Fields

Can a magnet pick up a penny? an aluminum can? a piece of glass?

DEMO - Electromagnet

Inducing Magnetic Fields

- Can a magnet pick up a penny? a piece of glass?
- Strong fields can align electron spins to create a temporary magnetic field (paramagnetic materials)

Electric

DEMO - Electromagnet

Inducing Magnetic Fields

- Can a magnet pick up a penny? a piece of glass?
- Strong fields can align electron spins to create a temporary magnetic field in opposition to the imposed magnetic field (diamagnetic materials)

DEMO - Electromagnet

Unmagnetized Aluminum S Ν diamagnetic water

Electric Currents and Magnetic Fields Moving charge creates a Magnetic compasses 5.00

- magnetic field => so will a current in a wire
- First detected by the deflection of compasses
- Pattern of concentric circles What happens if the direction of
- the current is reversed?

Electric Currents and Magnetic Fields

Moving charge creates a magnetic field => so will a current in a wire

- First detected by the deflection of compasses
 - Pattern of concentric circles
- What happens if the direction of the current is reversed?
 - Compass directions will also reverse

Clicker Question:

Most of us have magnets on our refrigerator door, why do they stick there?

- A: Because refrigerators are large magnets.
- B: Because the door is paramagnetic.
- C: Because the door is superconducting.
- D: Because the door is diamagnetic.

Clicker Question:

Which of the following materials would a strong magnet not be able to pick up?

- A: An aluminum can
- B: Another magnet
- C: A piece of glass
- D: A nail

Clicker Question:

What is a galvanometer?

- A: A really strong magnet
- B: A meter that measures electric current
- C: A meter that measures voltage
- D: A meter that measures magnetic field strength

Magnetic Forces on Charges and Currents

- A charged particle moving in a magnetic field will feel a deflecting force
 - Creates its own field
 - A stationary charge feels no such force
 - Direction is perpendicular to magnetic field lines and to velocity of the charges
 - Unlike other forces which act along a line between them

Basic principle behind electric meters and motors

DEMO - The Electric Motor

Earth's Magnetic Field

- Protects us from high energy cosmic rays
 - Fast moving charged particles are deflected away or towards the poles
- What produces the Earth's magnetic field?

Earth's Magnetic Field

- Protects us from high energy cosmic rays
- Fast moving charged particles are deflected away or towards the poles
- What produces the Earth's magnetic field?
 - Rotation of the Earth!

Aurora Borealis (Northern Lights)

Magnetic Resonance Imaging

Clicker Question:

Jupiter spins more than twice as fast as the Earth, what could we predict based on this about its magnetic fields?

- A: They should be stronger than Earth's
- B: They should be weaker than Earth's
- C: They should be the same as Earth's
- D: It doesn't depend on rotation.

Clicker Question:

If we think of the Earth as a giant magnet, its north (-seeking) pole is nearest to:

- A: Northern Canada within the arctic circle
- B: At the edge of the antartica south of Australia
- C: Just west of Hawaii in the tropics
- D: Albuquerque, NM in the southwest US

Electromagnetic Induction

- Current-carrying wire => magnetic field
- Moving magnet => current in a wire
- The greater the number of loops, the greater the induced voltage
 - Why doesn't this violate conservation of energy?

Electromagnetic Induction

- Current-carrying wire => magnetic field
- Moving magnet => current in a wire
 - The greater the number of loops, the greater the induced voltage
 - Why doesn't this violate conservation of energy? The voltage produces a current turning the coil into an electromagnet which produces a field that acts to repel the incoming magnet. Since more work has to be done to move the magnet in th of energy is saved!

DEMO -Solenoid and Jumping Rings

Transformers

Used to step voltage up or down

Transformers

· Used to step voltage up or down

Faraday's Law and EM Waves

- Change in the magnetic field strength in coils generates a current
- A magnet at rest in a coil will not induce a current
- More generally
 - A changing magnetic field induces an electric field
 - A changing electric field induces a magnetic field
 - In combination this produces the phenomenon of EM waves!

Electromagnetic waves – oscillating electric and magnetic fields that continually regenerate one another via EM induction.

Clicker Question:

When a bar magnet is broken in two pieces, each half is:

- A: no longer magnetic.
- B: stronger than the original magnet.
- C: the same strength at the original magnet
- D: half as strong as the original magnet

Clicker Question:

When a bar magnet is thrust inside a copper coil, the coil tends to:

- A: repel the magnet
- B: attract the magnet
- C: have no effect