

Commissioning, Operations, and early results for the LWA1 Radio Observatory

Joe Craig - University of New Mexico On behalf of the LWA1 Radio Observatory

> URSI NRSM Jan. 4, 2012

The LWA1 Radio Observatory

- "LWA1" starting scheduled observations, Feb 2012.
- LWA1 Radio Observatory is a funded University Radio Observatory.
- Second small station at the end of the VLA North-Arm.

The LWA1 Station

- 256 dual-polarization "stands"
- D = 100 m, pseudorandom distribution
- Outrigger @ 300 m baseline for calibration
- SEFD ~ 3 kJy (zenith)
- S_{min} ~ 5 Jy (5 sigma, 1 sec, 16 MHz, zenith)
- 4 x Simultaneous Beams
 - 2 pol. x 2 tunings
 - Up to 16 MHz of bandwidth each tuning
 - Rapid pointing ~ 10 ms
- All-Sky (all dipoles) modes:
 - TBN 67 kHz; continuous
 - TBW 78 MHz; 61 ms bursts

LWA-1 science emphasis: Transients, Pulsars, Sun, Jupiter, & Ionosphere Additional Science Programs: Cosmic Dawn/Dark Ages, Hot Jupiters, Radio Recombination Lines, ...

Comparison to other Instruments

	Declination Range	$\Delta v (MHz)$
UTR2:	-30° to $+60^{\circ}$	33
LOFAR:	-11° to +90°	3.6
Y=VLA:	-35° to +90°	3
LWA1:	-30° to +90°	16
GMRT:	-53° to +90°	10

Integration times of 1 hour. No effects of confusion noise are considered.

* Assumes 36 stations consisting of 96 antennas each, of which only 48 can be used simultaneously, for a total of 1728 antennas. LOFAR antenna system temperatures are 1:1, whereas LWA antennas are 4:1.

LWA1 has comparable sensitivity to all of LOFAR*

Station Architecture

As-Built Station

Every dipole is digitized for flexible beamforming & "all-dipole" modes.

Antenna Temperature

- Captured with production antenna thru digitizer, 12-bits @ 196 MSPS
- 10 seconds of integration captured between 12:30 PM and 2:30 PM (local time)... worst time for RFI below 30 MHz
- 6 kHz spectral resolution

Dipole Drifts - TBW

- Fc = 74 MHz
- T_int = 61 msec, every 4 min
- Red = Modeled sky temperature with simulated antenna pattern

All-Sky Imaging - TBN

- PASI (Prototype All-Sky Imager) is a backend to the LWA1's digital processor
- Receives the TBN data stream: continuous 100 kSPS data from all the dipoles
- Using a software FX correlator, PASI images most of the sky (≈1.5 π sr) many times per minute at 100% duty cycle

See LWA TV Live at <u>http://</u> www.phys.unm.edu/~lwa/lwatv.html

Cygnus A Drift Scan

First Pulsar Detections

Pulsars with LWA-1 courtesy Kevin Stovall (UTB)

Decametric Jovian Emission

Decametric Jovian Emission

Some LWA1 Projects

Transients

• S. Ellingson et al., ALTES project for beam-based transient searches (GRB Prompt Emission, Single Dispersed Pulses, ...)

- G. Taylor/J. Hartman, PASI Continuous, All-Sky Imaging/Transient Universe
- J. Hartman/G. Hallinan, Searching for Hot Jupiters
- R. Jenet, LoFASM Low Frequency All Sky Monitor for Radio Transients

EoR/Dark Ages

• L. Greenhill et al. LEDA project to detect/constrain the signal from the Dark Ages. New correlator, total power hardware and data reduction pipeline (CASPER Roach II & GPU)

• Bowman et al. Cosmic Dawn project to detect/constrain the final absorption peak; dual-beam technique to minimize foreground

Ionosphere/Space Weather

- White, Solar Radio Bursts at High Temporal and Spectral Resolution
- Clarke et al., Tracking the Dynamic Spectrum of Jupiter

See Related Talks:

• S. Ellingson - Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, and Calibration (Wed, 14:20)

- J. Hartman Observing Cosmic Dawn with the Long Wavelength Array (Fri, 10:20)
- L. Greenhill Detecting the Universe Beyond Redshift 20 (Fri, 10:40)

LSL

that:

Operations, Software, Users

May 11-12, 2011

340 TB/year recorded onto 2 TB drives and shipped to users

LWA Data Archive (LDA)

- Dell PC + 6 DRSUs in RAID5 provides 24 TB currently
- Grows at 340 TB/year to support Category 1 observing + maint.
- Located at the Center for Advanced Research in Computing (UNM), connected to Λ -rail and internet2
- Center is currently adding storage capacity scalable to 5 PB

For more information:

S. Ellingson, "Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy," *IEEE, Trans. Ant. & Prop.* [LWA Memo 166]

P. Henning, *et al.* (2010), "The First Station of the Long Wavelength Array," *Proc. ISKAF2010 Science Meeting, 2010.* [LWA Memo 171] Project Web Site: http://lwa.unm.edu

Memo Series: http://www.phys.unm.edu/~lwa/memos

The LWA is on Facebook